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A Theory of Exciton Dynamics with a 
Percolation Threshold 
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Mode-coupling methods are used to obtain an integral equation for the exciton 
diffusion constant in isotopically mixed crystals. Numerical solutions are ob- 
tained for nearest neighbor hopping in one- and two-dimensional square lattices. 
These solutions exhibit percolation thresholds. 
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1. INTRODUCTION 

The concept of percolation (1) has been successfully applied (2) to the 
problem of exciton migration in isotopically mixed crystals. A crystal is 
prepared containing exciton conductors, exciton insulators, and, optionally, 
a very low concentration of energy traps or sensors. 

As the conductor concentration is raised, a critical concentration is 
reached (2) at which exciton migration becomes very much more efficient. 
This concentration can be (2) interpreted as the percolation threshold for 
formation of an infinite cluster of conductors, with the definition of 
connectedness being appropriate for whatever the range of the conductor- 
conductor interaction might be. 

Given that percolation is an important concept for exciton migration, 
an obvious question is: can we construct a careful quantitative theory of 
exciton dynamics which naturally includes the consequences of percola- 
tion? The mathematical definition (1) of percolation is purely static, while 
exciton migration is inherently dynamic,, so the problem is by no means 
trivial. 
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Kopelman et al. (2~) have made some progress in this area by, in brief, 
assuming a knowledge of the static problem and then considering the 
dynamics of each sized cluster separately, with an eventual average over the 
distribution of cluster sizes. Blumen and Silbey (2a) have presented a suc- 
cessful, phenomenological theory. We have also (2e) addressed the question 
via a computer simulation. However, a dynamical theory which shows a 
percolation threshold that has not already been built in--a  completely self 
contained theory--has not been given so far. We present such a theory in 
this paper. 

2. MASTER EQUATION 

We shall treat a crystal with conductors, insulators, and no sensors. 
For low sensor concentrations, the energy which will register at a sensor 
can be calculated from the problem we solve. For a given configuration 
(assignment of conductors and insulators to lattice sites) of the crystal, we 
assume that energy migration among the conductors is described by a 
simple master equation, 

Ei = - ( ~j T~j )Ei( t) + ~ TjiEj( (l) 

El(t) is the energy of conductor i at time t, and T,~ = Tj, = T({%.[), where T 
is the distance-dependent hopping probability and r~j. is the separation of 
conductors i and j .  Equation (1) must be solved for each configuration and 
averaged over configurations to obtain the macroscopic properties of 
exciton migration; the average is denoted by ( ) .  

Equation (1) is usefully rewritten by the introduction of the occupation 
numbers, q: 

e s = 1, site s occupied by conductor 

= 0, otherwise (2) 

Then 

= - X [,,,L,s,E,(0 - , , r , J , , ( 0  ] 
S ~ 

( 3 )  

where the sum is over the entire lattice. 
It will be necessary to develop approximate solutions of Eq. (3), so we 

make the following observation. In a perfect crystal of conductors, there 
are no conductor concentration fluctuations. In a nearly perfect crystal the 
conductor concentration fluctuations are very small compared to those in a 
noninteracting lattice gas of conductors, and an expansion in these fluctua- 
tions is appropriate. Our theory is based upon a fluctuation expansion and 
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thus is designed to describe the high density regime, approaching the 
percolation threshold from above. 

Writing {, = ({) + &s, where ({) is the conductor fraction, a dimen- 
sionless measure of conductor concentration which lies between zero and 
one, Eq. (3) becomes 

L ( t )  = - E K,.,,E,(t) - 2 V,.,.[ e , ( t ) ~ , , -  e,,(~)8~] (4) 
S'  S '  

where K is a kernel which does not depend on the configuration, 

and &s' is a Kronecker delta; Note ~ , ,  T , / i s  not a function of s. Thus, Eq. 
(4) separates the exciton dynamics into a "mean field" part and a concen- 
tration (occupation number) fluctuation part. 

Equation (4) is of a much studied form--i t  has a quadratic non- 
l inear i ty-and  may be solved and averaged using the methods (3) of mode 
coupling theory. Interestingly, Eq. (4) may be uniquely amenable to mode 
coupling analysis. Usually, the quadratic term is a product of two indepen- 
dent, time-dependent variables. Here, however, 8q is a time-independent 
constant for each configuration, and the time-dependent E(t)  is determined 
by &. The result, to which we proceed now, is the simplest mode coupling 
problem we have ever seen. 

. SOLUTION AND AVERAGING 

Fol lowing  K a w a s a k i  (3~1 we first Four ier -LaPlace - trans form Eq. (4); 
we use the lattice version of the Fourier transform, 

E k = ~ exp(ik �9 s)E s (6a) 
S 

where we write s instead of r~, with the inverse, 

I 3 1 fBdkexp(_ i k ' s ) &  (6b) 

where v is the volume of the Brillouin Zone, and fBz is an integral over the 
Brillouin zone. Thus, 

(z + KDek(z  ) = Ek(t = 0) + 1 ( a k ' [  rk+k,&_ k, -- T k,& k,]Ek+k, 
(27r)3v JBz - - - 

(7) 

and the wave vector mixing or "mode coupling" character of the second 
term on the right of Eq. (7) is apparent. It is clear from Eq. (5) that K k 
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varies as k 2 for small k, so let 

k Dk (a) Kk ~ 2 0 

in the absence of concentration fluctuations exciton migration is diffusive 
with diffusion constant D 0. 

We will now proceed to calculate an exciton diffusion constant which 
includes the effects of fluctuations as well. The calculation is almost 
identical to the mode coupling discussed in great detail in Ref. 3, so we 
only give an outline here; a reading of Ref. 3 should answer any resulting 
questions. 

A formal solution of Eq. (7) may be compactly represented (3) graphi- 
cally. With the following definitions and correspondences, 

Eu( t = O) = 0 

Wk, k, = Tk+ k, - T k, = �9 

&-k '  = ~ (9) 

Go( ) = (z + k jgo)-' .- 

we may write the result of iterating Eq. (7) as 

Ek(Z ) =_----~ + _ _ L ,  + ~  + . . .  (10) 

Each line is assigned a wave vector subject to the rule that the wave vector 
emerging from the left of a vertex (W) is equal to the sum of the two wave 
vectors of the lines which entered on the right, and the wave vector of the 
leftmost line is k. An integral, [1/(2~r)3V]fB~, is performed over all interme- 
diate wave vectors. 

Although this is not a paper on mode coupling theory, it seems worth 
pointing out, for those familiar with the field, that the graphs in Eq. (10) are 
extremely simple. Their general form is a line with wiggly lines attached at 
multiple points, and no more complicated branching occurs; this is a 
consequence of only one of the variables in the bilinear term being time 
dependent. For that same reason, averaging Eq. (10) will not introduce 
time-dependent correlation functions, also a major simplification with 
respect to the usual (3~ case. 

We now average Eq. (10) over the concentration or occupation num- 
ber fluctuations, which will generate multipoint, same-time correlation 
functions of &. To keep the problem tractable, we now introduce, as usual, 
a Gaussian approximation; higher-order correlation functions are written 
as all products of pair correlation functions. Since the only nonzero pair 
correlation functions are of form (&k&_k.) ,  the wave vectors are paired 
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correspondingly. Graphically, a pairing is denoted by joining the two 
appropriate wiggly lines, which then represent a pair correlation function. 

Although we have been stressing the simplicity of the present problem, 
one complication exists as well. In contrast to the usual case, it is unphysi- 
cal for us to regard Ek(t = O) as under experimental control and indepen- 
dent of the configuration. The experiments can only control the spatial 
distribution of the exciting radiation, I(r), and 

Ek(t=0)= A f (11) 
(2r aBz 

where A is a constant of no interest here; energy can be initially present 
only at conducting sites, so E k and e are intimately linked. 

Two initial intensities naturally suggest themselves for a calculation of 
the exciton diffusion constant at wave vector k. First, the initial intensity 
might also be characterized by wave vector k, 

Iq = const x 8 (q - k) 

in which case Eq. (1 l) becomes 

Ek(t O) cx 1 3B d k ' d ( k )  -k' 
(2rr)3v z 

Now, corresponding to the division of e, into the average and a fluctuation, 

% = (2rr)3v(e)6(k) + &k (12) 

SO, in this case, 

Ek(/ '  = 0 )  CI2 <E)  

&0 being negligible compared to the delta function. Thus, the initial 
condition is independent of configuration, and Ek(t;/u) may be calculated 
as usual, i.e., with an assumed knowledge of E k (t = 0). 

Alternatively consider an initial intensity localized on one site, which 
facilitates thinking about an exciton "random walking" around the crystal. 
Then I k = const, and 

E k ( t = 0 )  ec ( dk'E_k,=v(2rr)3(E)+f~ dk'&_ k, (13) 
�9 ]Bz Bz 

Thus, the initial condition now has one part which is independent of the 
configuration but one part which depends on the configuration, a new 
feature. Let us make a graphical representation of a general initial condi- 
tion 

0--  a | + b d  (t4) 
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with the first term (a) representing the nonfluctuating part and the second 
term (b) depending on 8c; b can be zero. It is easy to see that the 
configuration-independent part of the initial condition is just its average, so 

a | ~ <Ek(t = 0)> (15) 

We may now average by pairing up the wiggly lines in the graphs, the 
result being (3) 

(E,(z))=a{ | ~ | 

_ |  . . .  } 

+ @  + b {  

+ @  )+ ---} (16) 

Graphs proportional to a have an even number of vertices and are the 
usual mode coupling graphs, while the b graphs have an odd number of 
vertices and are new, with the fluctuation initial condition playing the role 
of an extra vertex. 

Some of the graphs in Eq. (16) can be separated into disconnected 
parts by cutting a single G ~ line. These graphs are, as usual, expressed in 
terms of graphs ("connected graphs") which cannot be so disconnected via 
introduction of the self energy, ~k(Z), the result being 

<E,(z))=[(G~ ~k(Z)]-'[(E,(t=O)> + bAk(Z)] (171 

and we define the full propagator, G, 

-1 
. ~= Gk(Z I =~= ( [ G 2 ( z I ] - 1 4 -  Zk(Z)} (18/ 

~, is the sum of all graphs generated from the connected graphs in the a 
series by removing - -  from the left and - - |  from the right. The new 
feature in Eq. (17) is the initial condition fluctuation term, bA k, which is the 
sum of all graphs obtained from the b series by splitting off as much of the 
left-hand side of the graph as is possible by cutting a single G O line and 
erasing its fragments; the result is a connected graph with a vertex on the 
left which contains O. The first few graphs in bA are given by 

A k ( z ) = r  + ~  + t ~ - r " ~ O  + . . .  (19 t 
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G is the same propagator that appears in the absence of the "fluctuating 
initial condition" complication. 

Since ~ is expressed in terms of G ~ Eq. (18) gives G in terms G ~ As 
has been discussed exhaustively elsewhere, (3) it is possible to write a 
self-consistent, or integral equation for G via introduction of the "re- 
normalized vertex," denoted by a heavy dot, e, in which case 

y, = (20) 

i.e., ~ ,  and G, are functions of G, not G ~ The first two contributions to �9 

are 

, , =  . +  o ( w  5) (2t) 

In view of our interest in percolation, it is natural to focus attention on 
the exciton diffusion constant, Dk(z). With any proper definition of Dk(z), 
the mean square displacement, (S2(t)) ,  of an exciton originally localized at 
the origin of coordinates will be given by the relation, 

( S 2 ( t ) )  = tdlim Dk(z) -- t dD (22) 

z---~0 

at long times, where d is the dimension. Now, below the percolation 
threshold, the site at which the exciton starts must (~'2~ be a member of a 
finite cluster of conductors. The threshold, of course, is a function of the 
definition of connectedness. If T~j is identically zero for r 0 > R c and 
constant for T~j < R c then R c is the separation over which two conductors 
are connected. If T is a smooth function, no straightforward connection to 
a percolation threshold exists. 

For the case that R C exists, which we discuss in detail later on, (S2 ( t ) )  
cannot increase as t for arbitrarily large t below the threshold, as ( S  2) can 
never be bigger than the square of a dimension of a finite cluster. Thus, D 
must vanish as the conductor concentration drops below the threshold, and 
D is clearly an excellent vehicle for the discussion of the role of percolation. 

In the absence of a fluctuating initial condition, the appropriate 
definition is 

Gk(z ) = [ z + kZDk(z)] -~ (23) 

It is easy to see that Eq. (23) is also appropriate for the case at hand. Every 
graph in Au(z ) has a leftmost vertex with two wave vectors which add to k 
entering on the right. So, according to Eq. (9), Ak(z ) cc ik and 

Ek(z ) = Gk(z ) (Ek( t  = 0)),  small k (24) 
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It follows that if Dk(z) is defined according to Eq. (23), D obeys Eq. (22) 
and is thus a "proper" D. 

In short we have shown that the fluctuating initial condition does not 
complicate a mode coupling theory for Dl,(z). Gk(z) has the usual graphical 
expansion, and Eq. (23) converts an integral equation for G~(z) into one for 
Dk(z ), with limk_,O,z_,oDk(z) having the usual properties of a diffusion 
constant; the latter point is only true because A k cz ik. The presence of 
Ak(z ) may change the physical meaning of Dk(Z ) for high k from its usual 
meaning. 

3. APPROXIMATE INTEGRAL EQUATION FOR Ddz  ) 

In the current formulation, O) approximations are made to o. We will 
study the simplest approximation which is almost always used, | .. 
Converting the graphical notation back to reality, and using Eqs. (8),'(9), 
(20), and (23), we find 

o 1 v f  dk ' (Wkk,  Wk, kk -2 (8%,6e k') 
Dk(z) = Dk (2~r) 3 aBz " ' ' ) - 

•  + k'2Dk,(z)l - l  (25) 

Equation (25) is our basic result, which we will now discuss and solve in 
some simple cases. 

First, note that an equation much like Eq. (25) could have been 
derived from Eq. (7) by a very simple, if somewhat unsystematic, technique. 
Immediate averaging of Eq. (7) produces (Ek+k, 6~_k, ) as the difficult 
quantity on the right-hand side. Multiplication of Eq. (7), with k--> k + k', 
by &k', followed by averaging, leads to an equation for ( E  k + k &-k ' )  which 
contains (Ek+k,+k,,6e k,,6C_k,) on the right-hand side. If we make a 
Gaussian approximation, ( E k + k , + k , ,  6 s  ) ~'~ ( E k + k , + k , , ) ( 6 s  ~ e _ k , ) ,  

where we have noted that (dE) = 0. The equation for (Ek+k r 6e k, ) can now 
be solved and substituted into the equation for (Ek): The result is almost 
Eq. (25); the difference is that D ~ and not D, appear in the propagator on 
the far right. We are not recommending this procedure, but just point it out 
for whatever insight it can give into Eq. (25). 

Turning to the result itself, note that the second term on the right is 
independent of k as k--~ 0, as it should be. Because T,, s, only depends on 
I s - s'[, it follows that, for small k, 

Wk,k' = const • k" k' + O.(k 3) 

Wk, k = f ( Ik 'b  + k .  k'g(tk'  b + �9 . .  
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These results, combined with the observation that (~s k,) and Dk,(Z ) 
only depend on [k' I in a crystal with no unique spatial dimension, to which 
we confine the discussion, show that the k' integral produces the desired 
result as k ~ 0. 

D ~ is the "mean field" result and lacks any contribution from fluctua- 
tions. Its concentration dependence is just (e) ,  zero at zero concentration 
and unity for a pure conductor crystal. D ~ contains no thresholds. As the 
density is decreased, exciton diffusion stows down in a simple way which 
can be treated by a simple change of timescale. 

This behavior of D ~ makes perfect sense. As discussed earlier, D is 
expected to vanish below a percolation threshold because an exciton is then 
trapped on finite "islands," and ( S  2(0 ) cannot keep increasing as t at very 
large t. Now the presence of "islands" and the presence of concentration 
fluctuations are the same thing! There can be no islands without concentra- 
tion fluctuations, which D 0 explicitly avoids, so D 0 should not respond to a 
percolation threshold. 

It is possible to imagine a hypothetical system which makes the nature 
of D O very clear. Suppose that for, e.g., (e )  = 0.5, every site of the lattice 
was still occupied, but by one-half of a conductor, and so forth. Then no 
islands would exist. "Half  conductors" would have a weaker pair interac- 
tion, so diffusion would slow, but in a way corresponding to a timescale 
change. Such a system is described by D 0. 

The integral term in Eq. (25) contains an approximate treatment of 
fluctuation. The term has three qualitatively correct features: 

(i) It is negative, and so reduces D below its mean field value, as it 
should. 

(ii) It is proportional to the mean square conductor fluctuations, 
(6s and thus vanishes as ( c ) ~ l  (no fluctuations in a perfect 
crystal). 

(&k,&_k,) becomes (4) important at intermediate (~) and also van- 
ishes (4) as (e)  ~ 0, which leads to further physically correct behavior of the 
fluctuation contribution to D. 

(iii) The percolation threshold which enters D is, as discussed, a 
function of the range over which ~,,, is nonzero. Obviously, an exciton 
which can only hop short distances can be trapped more easily, with 
smaller insulator barriers, than a longer range-hopping exciton. This behav- 
ior is present in Eq. (25). The interaction range, R c, enters the W functions. 
For k'  > R e- 1, the quantity in the square bracket vanishes and "cuts off" 
the k' integral. Thus, D only gets contributions from concentration fluctua- 
tions, (3% &-k ' ) ,  with k' ~ Re- 1. 

This result makes beautiful sense. Roughly, a fluctuation of wave 
vector k' occurs over a spatial dimension of k ' -J .  In other words a 
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fluctation with k' < R c- u disrupts the conductor structure over a distance 
greater than the hopping distance, and thus decreases D. Higher k', or 
shorter distance, fluctuations have no effect on D. 

In sum, the approximate theory has many obvious, desirable features. 
However, an actual solution of the equation is necessary for a real test of 
the theory; in particular, the qualitative discussion cannot tell us if Eq. (25) 
yields a D with a percolation threshold. 

4, CALCULATION OF D FOR SOME SIMPLE LATTICES; 
DISCUSSION 

We have obtained D by numerical analysis on one-dimensional and 
two-dimensional square lattices for nearest neighbor hopping, 

T,, s, = const, s, s' nearest neighbors 

= 0, otherwise (26) 

and under the assumption that (&k& k,) has the form found in the 
simplest lattice gas theories, <4) 

(&k' ar = ( c ) ( l  - (e) )  (27) 

use of a more complicated expression for the fluctuations would not 
complicate the analysis, but we are not interested in refinements of the 
theory at this point. 

For the two-dimensionaI square lattice with nearest neighbor hopping 
the percolation threshold is (1) 0.58. One dimension is a pathological case 
for percolation, with threshold at (c )  = 1, corresponding to the fact that a 
single insulator creates "islands" in one dimension. Recall that we have 
formulated an approximate treatment of the fluctuation contribution to D. 
So, the greater the importance of fluctuations, the more severe will be the 
test of our approximation. Very broadly speaking, fluctuations decrease in 
importance as dimension increases, and our theory should improve as d 
increases. 

We solved Eq. (25) for z = 0 by iteration about the mean field result. 
For (@~< 1, the iteration converges very quickly. As (c )  is decreased 
convergence slows, but the trend of successive iterates remains monotone, 
decreasing smoothly from D ~ A critical value of (@,(@c is finally 
reached, defined within the numerical analysis as follows: A further de- 
crease of 0.001 in (@ causes the series of successive D's  to oscillate 
violently, including negative values, with no signs of convergence. Further 
lowering of (~) worsens the situation. 
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Fig. i. Plot of the exciton diffusion constant, D, vs. conductor concentration, (e). Lower and 
middle solid curves are theoretical results for one and two dimensions, respectively; curves 
terminate at (() = (e)c + 0.005. Dashed line is mean field D. 

It appears, then, that (e)c gives the radius of eovergence of the high 
density solution generated by the fluctuation expansion. We suggest (~)~ is 
a percolation threshold. 

In Fig. 1, we show the results just discussed, plotting D((e))/ 
D ( ( ( )  = l) vs. @)  [recall D ( ( ( ) =  1 )=  D ~  1)1. O~ 1) i s  
just a straight line running from 0 at ( e )  = 0 to unity at ( c )  = 1. The (e)c 's  
we find are 0.505 in two dimensions and 0.78 in one dimension. These 
answers are not perfect, and may be put in perspective by the relations 

(e )  = 0.87@)~ x"r two dimensions 

= 0.78(r e• one dimension (28) 

So our percolation thresholds are too low in one and two dimensions, the 
situation being better in d = 2. 

We choose to focus on the very positive features of our equation, its 
qualitative reasonableness and, especially, the presence of a threshold, 
rather than on the numerical errors in the position of the thresholds. The 
calculation of percolation thresholds, and nothing else, is itself a major 
problem, (0 while our theory yields a threshold along with the full exciton 
dynamics. Furthermore, as discussed, two and three dimensions provide a 
very severe test of any approximate treatment of fluctuations. Our theory 
should be better in three dimensions than in two; we suggest a good chance 
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exists that the theory will be quantitatively accurate in three dimensions. Of 
course, many of the problems of experimental interest are three dimen- 
sional, although some are of lower dimension, e.g., if hopping is essentially 
confined to one crystal plane. Our next step, of course, will be to carry out 
the more computer time-consuming calculations in three dimensions. 

We have studied the low (~) solution of our equation via the (s) scaling 
method, and it does not appear correct. Our theory was created as a 
high-density theory, and no stroke of luck has caused it to be valid at low 
density as Well. 

In conclusion we are eager to use the fledging theory to make new 
predictions and to interpret the next generation of time-resolved exciton 
migration experiments. If the theory does turn out to be quantitative in 
three dimensions on some test lattices, we simply can calculate Du(z ) for 
any indicated T(r0. ) with an expectation of good results. If the finite lifetime 
of excitons must be treated, this can be done by addition of dissipative term 
to the master equation which does not complicate the ensuing analysis. 
Even where the theory does not give an exact (e)c we can, as in much of 
the theory of critical phenomena, study the behavior of D near the 
threshold, i.e., 

77)7 ) \ 

An experimental study of such behavior would be very interesting. 
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